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Abstract

The present study concentrates on the effects of viscous dissipation in laminar forced convection. A power law fluid

rheology model is applied and the effect of heat conduction in the axial direction is considered negligible. The physical

properties are considered constant. Assuming fully developed velocity profile, the development of the temperature pro-

file and its asymptotic behavior are investigated. For the solution of the problem the Laplace transform Galerkin tech-

nique is used. The method allows for the most general boundary conditions. A detailed comparison with previously

published results provides a verification of the numerical technique. An important feature of the approach is that deriv-

atives and integrals with respect to the axial location can be obtained through the operational rules of the Laplace trans-

formation and hence no numerical derivation or integration is needed. As an application of the numerical model, we

focus on the natural cooling regime, when the viscous dissipation of energy is counter-balanced by keeping the wall

temperature at the ambient value. We derive a correlation for the asymptotic behavior of the Nusselt number in the

natural cooling regime. This correlation reproduces the known value for the Newtonian case and provides a convenient

means to normalize the Nusselt number for a wide range of flow behavior indices.
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1. Introduction

For the processing of polymer solutions and melts

the following heat transfer problem is of particular inter-

est. Fluid at ambient temperature with a well developed

laminar velocity profile enters a circular pipe whose wall

may be maintained at constant temperature, or cooled

(heated) with a constant flux. Heat conduction in the

axial direction is negligible in comparison with the heat
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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transport by the over-all fluid motion. Viscous heating is

not negligible and the rheology of the fluid is described

by a power law. The physical properties can be consid-

ered constant. We are concerned with the development

of the temperature profile and its asymptotic behavior.

Considering only Newtonian behavior and neglecting

the effect of viscous dissipation, this is the well known

Graetz–Nusselt problem. It has been thoroughly investi-

gated for the case when the boundary condition is in

Dirichlet form (constant wall temperature) and when it

is in the Neumann form (constant heat flux). Results

are summarized for instance in [1] and [2]. Occasionally
ed.
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Nomenclature

Br Brinkman number

c1,c2,c3 constants in boundary condition

cp specific heat (J/kg K)

Gz Graetz number

h heat transfer coefficient (W/m2 K)

M number of terms in Gaver–Wynn–Rho

method

n number of terms in Galerkin method

Nu Nusselt number

p(r) polynomial in Galerkin method

Pe Peclet number

qw wall heat flux (W/m2)

r dimensionless radial location

R radial location(m)

Rw pipe radius (m)

s Laplace variable

t dimensionless temperature

T temperature (K)

T0 ambient (entrance) temperature (K)

Tw wall temperature (K)

u dimensionless velocity

U axial velocity (m/s)

Um mean (superficial) velocity (m/s)

x dimensionless axial location

X axial location (m)

Greek symbols

j consistency parameter (Pa sm)

m flow-behavior index

k thermal conductivity (W/m K)

q density (kg/m3)

sRX shear stress (Pa)

Subscripts

a at adiabatic regime

b bulk

H at constant wall flux

m mean

T at constant wall temperature

x local

w wall

1 reference

0 ambient (also: at natural cooling regime)

1 asymptotic

P.P. Valkó / International Journal of Heat and Mass Transfer 48 (2005) 1874–1882 1875
the so called third boundary condition (Robin form) is

also included, [3].

Brinkman [4] brought attention to the importance of

viscous dissipation and Lyche and Bird [5] were the first

to consider fluids with power law behavior. Parallely, the

Graetz series solution was perfected by Brown [6]. This

was followed by applying various numerical methods

to the non-Newtonian problem, [7–10] and asymptotic

expansion techniques [11,12]. Recent and highly reliable

results for the power law case (without viscous dissipa-

tion) are available in Johnston [13]. Asymptotic behav-

ior for power law behavior with viscous dissipation

was considered by Barletta [14]. Other than Newtonian

and power law behavior has been also studied, for in-

stance Bingham plastic behavior in [15–17] and recently

Phan–Thien–Tanner (PTT) rheology, [18]. The effect of

slip at the wall was included, for example, in [19,20]. An-

other direction of research has been to incorporate axial

heat conduction, basically extending the scope of the

original analytical approach of Graetz, [21–25] and to

determine when the axial conduction can be neglected

[13].

This work departs from previous studies in the fol-

lowing. It uses the the Galerkin (weighted residual)

method in combination of the Laplace transform. We

are aware of the application of the Galerkin method to

the Graetz problem [26], but not in Laplace space. Our

method allows for a more general form of the boundary
condition including the special cases when the constant

flux is zero (adiabatic) and when the constant wall tem-

perature coincides with the ambient temperature (natu-

ral cooling). In addition, the so called third type of

boundary condition is also a special case of our general

boundary condition. One important advantage of the

approach is that all differentiation and integration are

handled analytically in the radial direction and through

the operational rules of Laplace transform in the axial

direction. High accuracy of the final results is made pos-

sible by a novel numerical Laplace transform inversion

technique.
2. Governing equations

The problem under consideration is to find the tem-

perature T as a function of axial location X and radial

position R. The fluid has a fully developed laminar

velocity profile, U(R) corresponding to the power law

rheology:

s ¼ j
oU
oR

� �m

ð1Þ

The energy equation includes the heat generated by

the internal friction of the fluid:

qcpUðRÞ oT
oX

¼ k
1

R
o

oR
R
oT
oR

� sRX
oUðRÞ
oR

ð2Þ
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In (2) the velocity profile is

UðRÞ ¼ Um

3m þ 1
m þ 1

� �
1� R

Rw

� �mþ1
m

" #
ð3Þ

resulting in the derivative:

dUðRÞ
dR

¼ Um

3m þ 1
m

R
1�m
m
w R

1
m ð4Þ

and shear stress:

sRX ¼ jR�m�1
w

3m þ 1
m

� �m

R ð5Þ

The primary quantity is the bulk (also called cup-

mixing or caloric mean) temperature, defined by

T b ¼
R Rw
0

RUðRÞT dRR Rw
0

RUðRÞdR
ð6Þ

Also of interest is the wall temperature:

T w ¼ T ðX ;RwÞ ð7Þ

because it goes into the definition of the local Nusselt

number:

Nux ¼
2Rwh

k
¼
2Rw oT

oR jR¼Rw

ðT w � T bÞ
ð8Þ

In order to introduce dimensionless variables, we se-

lect a reference temperature difference DT1 and define

t ¼ T � T 0
DT 1

ð9Þ

with respect to the ambient temperature, T0.

The other dimensionless variables are

r ¼ R
Rw

ð10Þ

x ¼ X
RwPe

ð11Þ

where

Pe ¼ 2RwUmqcp
k

ð12Þ

We note that in the literature 2x is also used as

dimensionless axial coordinate. In some publications

the Graetz number is preferred, Gz = p/2x.
Introducing the dimensionless velocity

uðrÞ ¼ 3m þ 1
m þ 1

� �
1� r

mþ1
m

h i
ð13Þ

and the Brinkman number

Br ¼ j
3m þ 1

m

� �m U 1þm
m R1�m

w

kDT 1
ð14Þ

we arrive at the dimensionless form of the energy

equation:
1

2
uðrÞ ot

ox
¼ 1

r
o

or
r
ot
or

� Br
3m þ 1

m

� �
r

mþ1
m ð15Þ

The boundary conditions will be common for all

cases investigated. The entrance temperature is the

ambient temperature, therefore

tð0; rÞ ¼ 0 ð16Þ

Because of the radial symmetry,

ot
or

ðx; 0Þ ¼ 0 ð17Þ

The boundary condition at the wall is formulated in

the general manner

c1tðx; 1Þ þ c2
ot
or

þ c3 ¼ 0 ð18Þ

where c1 and c2 cannot be zero simultaneously. This in-

cludes the Dirichlet, the Neumann, and the Robin

boundary conditions. Since we allow c3 to be zero, it

also includes the adiabatic regime and the natural cool-

ing regime.

The dimensionless bulk temperature is obtained from

tb ¼ 2
3m þ 1
m þ 1

� �Z 1

0

r 1� r
mþ1
m

	 

tdr ð19Þ

and will provide most of the required heat transfer quan-

tities directly.
3. Laplace transform Galerkin method

Our approach starts with eliminating the x variable

via Laplace transform.

3.1. Equation in Laplace domain

The Laplace transform of the dimensionless temper-

ature (with respect to the variable x) is denoted by

ts(r) with s as the Laplace variable. The transformed en-

ergy equation takes the form

1

2

3m þ 1
m þ 1

� �
1� r

mþ1
m

	 

stsðrÞ

¼ 1
r
o

or
r
otsðrÞ
or

� Br
s

3m þ 1
2m

� �
r

mþ1
m ð20Þ

The entrance condition is absorbed by the transfor-

mation, the other boundary conditions become

otsðrÞ
or

����
r¼0

¼ 0 ð21Þ

and

c1tsðrÞjr¼1 þ c2
otsðrÞ
or

����
r¼1

þ c3
s
¼ 0 ð22Þ
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3.2. Galerkin method

In order to approximate the solution in Laplace

space, we introduce the nth order trial polynomial p(r),

satisfying the two boundary conditions (21) and (22).

pðrÞ ¼ a0 þ
Xn�1
i¼2

airi � rn
1

c1 þ c2n

� c1 a0 þ
Xn�1
i¼2

ai

 !
þ c2

Xn�1
i¼2

aiiþ c3

" #
ð23Þ

The (n � 1) unknown coefficients are determined

from substituting the trial polynomial into (20), then

forming the residual w:

w ¼ � o
2pðrÞ
or2

� 1
r
opðrÞ
or

þ 3m þ 1
m þ 1

� �
1� r

mþ1
m

	 

spðrÞ

� Br
s

3m þ 1
2m

� �
r

mþ1
m ð24Þ

Taking the partial derivatives of w according to the un-
known coefficients

/i ¼
ow
oai

; i ¼ 0; 2; 3; . . . ; n� 1 ð25Þ

and requiring the following integrals to be zero:Z 1

0

/iwdr ¼ 0; i ¼ 0; 2; 3; . . . ; n� 1 ð26Þ

we obtain the system (26) consisting of (n � 1) linear
equations, from which the (n � 1) unknown coefficients
(ai, i = 0,2,3, . . . ,n � 1) can be determined.
For low or moderate n the system can be solved sym-

bolically, obtaining the polynomial coefficients ai as a

function of the Laplace variable s. For n > 10 the sym-

bolic solution becomes increasingly cumbersome and

hence the linear system (26) is solved numerically, for

any s where the coefficients are required.

For differentiation and integration in the r variable

we make use of the fact, that the Laplace transform of

the temperature is in a form of polynomial in r. There-

fore, the Laplace transform of the bulk temperature is

easily calculated. The ‘‘real domain’’ value is obtained

by numerical inversion of the Laplace transform, that

is performing the back-transformation s! x. Similarly,

the temperature can be obtained at any location, includ-

ing the value at the wall.

For differentiation and integration with respect to the

x variable we use the operational rules of Laplace trans-

formation. Hence no numerical differentiation/integra-

tion is involved in any of our results.

The Galerkin method has been applied in conjunc-

tion with the Laplace transform for instance by Sudicky

[27] and Sutradhar et al. [28], and a similar combination

of Laplace transform with finite elements [31] and
boundary elements [29,30] is often applied, though al-

most exclusively for time dependent problems. In all

studies, the obtained Laplace transform has to be in-

verted numerically, and this step is considered the weak-

est link in the procedure.

3.3. Numerical Laplace transform inversion

Indeed, inherent in almost all previously suggested

numerical inversion algorithms are a number of free

parameters, whose selection affects the final results.

For early reviews, see Davies and Martin [32] and

Narayanan and Beskos [33]. For recent developments

we refer to [34–37]. The Gaver–Wynn–Rho algorithm

[38] applied in this work overcomes this problem by hav-

ing only one free parameter: M, the number of terms to

be considered. With increasing M, the result converges

to the true value. This is made possible by the systematic

application of multi-precision computing.

The Gaver–Wynn–Rho algorithm is publicly avail-

able inMathematica, [39]. In all our calculations we used

the default number of termsM = 32. This requires 2.1M

significant digits in the Laplace transform. The required

number of digits could be generously provided by using

4M precision during the numerical solution of the linear

system.
4. Results and comparison with previous work

First we compare our calculations with the extensive

literature available for the case when viscous dissipation

can be neglected.

4.1. Constant wall temperature (different from ambient)

Dirichlet boundary condition

DT 1 ¼ T w � T 0 ð27Þ

c1 ¼ 1; c2 ¼ 0; c3 ¼ �1 ð28Þ

In this case tw = 1 and if in addition viscous energy

dissipation can be neglected, then the change in the bulk

temperature is related to the wall heat flux, and hence

the local Nusselt number is

NuT ;x ¼
1
2

dtb
dx

1� tb
ð29Þ

where the derivative is obtained directly by inverting

sts,b. The mean Nusselt number is the integral average

of NuT,x over the section length, and can be obtained

from analytical integration of (29) as

NuT ;m ¼ 1

2x
ln

1

1� tb
ð30Þ



Table 1

Constant wall temperature, Br = 0, m = 1

x tb [6] tb [9] tb [11] tb [13] tb Present NuT,x Present NuT,m Present

0.001 0.038715 0.038247 0.038251 0.03825 0.038250 12.82418 19.50052

0.002 0.059736 0.059659 0.059683 0.05968 0.059682 10.13019 15.38419

0.005 0.106572 0.106451 0.106580 0.10657 0.106572 7.47038 11.26895

0.010 0.163781 0.163482 0.163814 0.16378 0.163781 6.00151 8.94324

0.020 0.248894 0.248405 0.249035 0.24889 0.248894 4.91606 7.15522

0.005 0.421213 0.421350 0.422248 0.42121 0.421213 4.00463 5.46820

0.100 0.604701 0.605891 0.610085 0.60470 0.604701 3.70999 4.64057

0.200 0.810290 0.810310 0.840523 0.81029 0.810290 3.65807 4.15565

0.500 0.978856 0.978675 1.098401 0.97886 0.978856 3.65679 3.85640

1.000 0.999454 0.999514 0.942796 0.99945 0.999454 3.65679 3.75660
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In other words, once tb is calculated all relevant

quantities can be obtained. Table 1 shows previously

published results for the Newtonian case (m = 1). As
seen, our results agree with the available most accurate

calculations of Ref. [13].

For the non-Newtonian case, but still without vis-

cous dissipation, we show a comparison for m = 0.5 in
Table 2.

4.2. Constant wall flux (different from zero)

Similarly well established are the results for the con-

stant wall flux case. Then the reference temperature is se-

lected according to

DT 1 ¼
qwRw

k
ð31Þ

where qw is the prescribed (non-zero) heat flux. Now the

Neumann boundary condition is recovered from (18) by

putting

c1 ¼ 0; c2 ¼ 1; c3 ¼ 1 ð32Þ

The wall temperature is obtained from the solution

tw ¼ tðx; 1Þ ð33Þ

If Br = 0, then the bulk temperature is related to the

location according to tb = 2x, and hence
Table 2

Constant wall temperature, Br = 0, m = 0.5

x tb [13] tb Present NuT,x Present NuT,m Present

0.001 – 0.040989 13.7422 20.9266

0.002 – 0.063861 10.8468 16.4979

0.005 0.11373 0.113731 7.99172 12.0735

0.010 0.17429 0.174291 6.41831 9.57567

0.020 0.26385 0.263854 5.25955 7.65818

0.050 0.44318 0.443181 4.29693 5.85514

0.100 0.63051 0.630508 3.99836 4.97813

0.200 – 0.832700 3.95041 4.46992

0.500 – 0.984356 3.94942 4.15767

1.0 – 0.999699 3.94942 4.05354
NuH ;x ¼
2

tw � 2x
ð34Þ

We can define a mean Nusselt number again as the

integral average of NuH,x, therefore

NuH ;m ¼ 2

�tw � x
ð35Þ

where

�tw ¼ 1
x

Z 1

0

tw dx ð36Þ

The integral can be calculated directly, inverting ts,w/

s. This is one of the advantages of the Laplace transform

approach.

Table 3 shows comparison for the Newtonian case

and Table 4 for m = 0.5, both with the results of Ref. [13].

4.3. Viscous dissipation in adiabatic regime

Consider the special case of no heat flux. In other

words, the viscous dissipation is heating up the fluid.

For the first sight, the selection of DT1 is not trivial.
However, integrating the heat source term we can show

that in the adiabatic regime the bulk temperature rises

linearly:
Table 3

Constant wall flux, Br = 0, m = 1

x tw [13] tw Present NuH,x Present NuH,m Present

0.001 – 0.130480 15.5666 20.9415

0.002 0.16751 0.167513 12.2314 16.4747

0.005 0.23517 0.235169 8.88222 11.9786

0.010 0.30689 0.306892 6.97127 9.40513

0.020 0.40530 0.405301 5.47493 7.38420

0.050 0.60225 0.602249 3.98209 5.36733

0.100 0.84308 0.843077 3.11005 4.21177

0.200 1.25716 1.25717 2.33327 3.25809

0.500 2.45833 2.45833 1.37143 2.12664

1.00 – 4.45833 0.81356 1.37989



Table 4

Constant wall flux, Br = 0, m = 0.5

x tw [13] tw Present NuH,x Present NuH,m Present

0.001 – 0.121817 16.6921 22.4741

0.002 – 0.156639 13.1028 17.6656

0.005 0.22053 0.220532 9.49973 12.8271

0.010 0.28865 0.288648 7.44467 10.0587

0.020 0.38273 0.382728 5.83553 7.88513

0.050 0.57302 0.573023 4.22812 5.71531

0.100 0.80902 0.809023 3.28395 4.46918

0.200 – 1.22059 2.43728 3.43453

0.500 – 2.42143 1.40704 2.20818

1.0 – 4.42143 0.82596 1.41485
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Fig. 1. Evolution of the temperature profile in adiabatic

regime, Newtonian fluid (m = 1).
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Fig. 2. Evolution of the temperature profile in adiabatic

regime, flow behavior index, m = 0.1.
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DT b;a
X

¼ 2 3m þ 1
m

� �m jR�1�m
w U m

m

qcp
ð37Þ

From (37) two important results follow: first,

tb;a ¼ 4Brx ð38Þ

whatever reference temperature difference is selected in

(11).

Second, if we select the reference temperature differ-

ence to coincide with Tb � T0 at location X = PeRw (that

is at x = 1) then

DT 1 ¼
2j
qcp

3m þ 1
m

� �m

R�m
w U m

m ð39Þ

and the Br number becomes unity.

As a consequence, we obtain

tb;a ¼ 4x ð40Þ

Note that with our scaling we avoid the problem of

infinite Brinkman numbers and the Nusselt number is

automatically zero in the adiabatic regime.

A next step in testing our algorithm is therefore to

check the behavior in the adiabatic regime. In (18)

now we set

c1 ¼ 0; c2 ¼ 1; c3 ¼ 0 ð41Þ

and with various Brinkman numbers we solve for tb. The

results (not shown here) confirm that with a moderate

number of terms (n = 20) we can reproduce tb = 4x with

more than six decimal digits accuracy for a Newtonian

fluid. For a non-Newtonian fluid, the number of re-

quired terms in the Galerkin method did increase for

very low flow behavior indices (for m = 0.001 we needed
n = 40 terms to achieve the same accuracy).

Fig. 1 shows the development of the adiabatic tem-

perature profile for the Newtonian case and Fig. 2 for

a highly non-Newtonian case (m = 0.1), both for

Br = 1. As seen, the adiabatic profiles are very similar,

almost independent of the rheology.
5. Viscous dissipation with natural cooling

Making use of the natural scale of the temperature

provided by (39) we are able to study the situation called

natural cooling (the Graetz–Brinkman problem). In this

regime the wall temperature is kept at the ambient value.

We set the constants in (18) as

c1 ¼ 1; c2 ¼ 0; c3 ¼ 0 ð42Þ

From the previous considerations it is clear, that the

heat flux can be obtained from the derivative of tb alone.

In addition, the driving temperature difference appear-

ing in the Nusselt number is tb itself. Consequently,

whatever DT1 is selected in (11), the local Nusselt num-
ber can be calculated from

Nu0;x ¼
2Br � 1

2

dtb
dx

tb
ð43Þ
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Fig. 3. Evolution of the temperature profile in natural cooling

regime, Newtonian fluid (m = 1).
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Fig. 4. Evolution of the temperature profile in natural cooling

regime, flow behavior index, m = 0.1.
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where the derivative is obtained directly, inverting sts,b.

The mean Nusselt number now involves the integral

average of tb

Nu0;m ¼
2Br � 1

2x tb
�tb

ð44Þ

where

�tb ¼
1

x

Z x

0

tb dx ð45Þ

can be again obtained directly from inverting ts,b/s.

We denote the natural-cooling Nusselt number by

the subscript zero and its limiting value at infinite x by

Nu0,1.

Figs. 3 and 4 show the development of the tempera-

ture profiles in the natural cooling regime for the New-

tonian and a highly non-Newtonian case (m = 0.1),
respectively. In both cases we selected the reference tem-

perature difference according to (39), and hence Br = 1.
Table 5

Natural cooling (ambient wall temperature), any Br

x m = 1

tb/Br Nu0,x Nu0,m

0.001 0.003101 187.870 279.125

0.002 0.005799 122.124 180.958

0.005 0.012893 70.0420 103.281

0.010 0.022946 46.6163 68.3874

0.020 0.039585 31.5111 45.8993

0.050 0.076471 19.4410 27.8715

0.100 0.117825 14.1374 19.7412

0.200 0.164859 11.1670 14.7234

0.500 0.203488 9.74152 11.4010

1.0 0.208208 9.60357 10.3994

10.0 0.208333 9.60000 9.67089

100. 0.208333 9.60000 9.60701
The basic difference between the Newtonian and the

highly non-Newtonian fluids is that in the (m = 0.1) case
most of the heat develops near to the pipe wall and the

temperature profiles become steeper at the wall.

Table 5 shows the results obtained for Newtonian

fluid and for a power law fluid with m = 0.5. As antici-
pated, the Nusselt number in the natural cooling regime

is independent of the Brinkman number. It depends only

on the location, x and flow behavior index, m. Repeating
the same calculation for other flow behavior indices, we

obtain a list of (m,Nu0,1) pairs that can be described by

the simple formula

Nu0;1 ¼ 2þ 16m þ 30m
2

m þ 4m2 ð46Þ

shown as a solid line in Fig. 5.

The above expression gives the known result: 48/5 for

the Newtonian case, (see [1, p. 80]) and is in accordance

with similar results obtained for the PTT fluid by Coelho

et al. [18].
m = 0.5

tb/Br Nu0,x Nu0,m

0.002982 220.006 327.033

0.005522 143.297 212.482

0.012081 82.4309 121.691

0.021187 54.9949 80.8128

0.035942 37.2669 54.4052

0.067764 23.0768 33.1722

0.102374 16.8475 23.5743

0.140142 13.3893 17.6552

0.168503 11.8007 13.7654

0.171372 11.6692 12.6044

0.171429 11.6667 11.7507

0.171429 11.6667 11.6750
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The correlation (46) allows us to normalize the Nus-

selt number by its limiting value. Shown in Figs. 6 and 7

are the normalized local and mean Nusselt numbers for

various flow behavior indices. The combination of the
formula (46) and the figures provides both the local

and the mean Nusselt numbers for any location, x and

flow behavior index, m.
6. Conclusions

The extension of the Graetz problem including vis-

cous dissipation and power law fluid rheology model

was solved using the Laplace transform Galerkin tech-

nique. The method allows for the most general bound-

ary conditions and provides highly accurate results as

shown by comparison to previously published results

obtained by a variety of analytical and numerical ap-

proaches. An additional advantage of the approach is

that derivatives and integrals with respect to the axial

location could be handled by the operational rules of

the Laplace transformation and hence no accuracy is

lost in these operations.

By recognizing the internal scaling provided by the

existence of the viscous energy dissipation, we introduced

a new selection of the reference temperature difference.

The new scaling and the flexibility of the numerical meth-

od with respect to the boundary conditions allowed us to

focus on the natural cooling regime. In this regime the

viscous dissipation of energy is counter-balanced by

keeping the wall temperature at the ambient value. From

the numerical results we derived a correlation for the

asymptotic value of the Nusselt number in the natural

cooling regime. The correlation reproduces the known

value for the Newtonian case. By normalizing the Nus-

selt number with its asymptotic value, we could represent

the heat transfer behavior (the local and mean Nusselt

numbers) in a concise manner.
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